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Abstract

A numerical method for the direct numerical simulation of incompressible wall turbulence in rectangular and cylin-
drical geometries is presented. The distinctive feature resides in its design being targeted towards an efficient distributed-
memory parallel computing on commodity hardware. The adopted discretization is spectral in the two homogeneous
directions; fourth-order accurate, compact finite-difference schemes over a variable-spacing mesh in the wall-normal
direction are key to our parallel implementation. The parallel algorithm is designed in such a way as to minimize data
exchange among the computing machines, and in particular to avoid taking a global transpose of the data during the
pseudo-spectral evaluation of the non-linear terms. The computing machines can then be connected to each other
through low-cost network devices. The code is optimized for memory requirements, which can moreover be subdivided
among the computing nodes. The layout of a simple, dedicated and optimized computing system based on commodity
hardware is described. The performance of the numerical method on this computing system is evaluated and compared
with that of other codes described in the literature, as well as with that of the same code implementing a commonly
employed strategy for the pseudo-spectral calculation.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The direct numerical simulation (DNS) of the Navier–Stokes equations written for low Reynolds num-
ber, incompressible turbulent flows in simple geometries is becoming an increasingly valuable tool for basic
turbulence research [1]. Interesting wall-bounded flows span a number of simple geometries, either in
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cartesian (plane channel flow, boundary layer over a flat plate) or in cylindrical (pipe flow, annular pipe
flow, flow in curved channels) coordinate systems.

For the cartesian case, an effective formulation of the equations of motion was presented 15 years ago by
Kim et al. [2] in their pioneering and widely referenced work on the DNS of turbulent plane-channel flow.
This formulation can be regarded today as a de facto standard; it has since then been employed in many of
the DNS of turbulent wall flows in planar geometries. It consists in the replacement of the continuity and
momentum equations written in primitive variables by two scalar equations, one (second order) for the nor-
mal component of vorticity and one (fourth order) for the normal component of velocity, much in the same
way as the Orr–Sommerfeld and Squire decomposition of linear stability problems. The main advantages of
such an approach are that pressure is eliminated from the equations, and the two wall-parallel velocity com-
ponents are recovered as the solution of a 2 · 2 algebraic system (a cheap procedure from a computational
point of view), when a Fourier expansion is adopted for the homogeneous directions. A high computational
efficiency can thus be achieved. The same approach can be employed to write the equation in cylindrical
coordinates, but it appears to be much less popular than the primitive-variable formulation of the
Navier–Stokes equations. The formulation in terms of two scalar equations for radial velocity and radial
vorticity can be found for example in [3].

This optimally efficient formulation does not prescribe any particular discretization method for the dif-
ferential operators in the wall-normal direction. Many researchers, including Kim et al. [2], used spectral
methods (typically Chebyshev polynomials) in this direction too, but other possibilities exist, finite differ-
ences and B-splines [4] being the most popular ones. The use of finite differences has seen growing pop-
ularity [1], but mainly in the context of the primitive-variable formulation, and for the discretization of
the derivatives in all three spatial directions (see for example [5]). The choice of spectral methods for the
discretization of the wall-normal, inhomogeneous direction has a direct impact on the parallelization of a
computer code, given the non-locality of the spectral differential operators. As a matter of fact, to our
knowledge no fully spectral DNS code has been able to date to run in parallel without a large amount
of communication. As a consequence, high-performance parallel DNS has been mostly restricted to large
computing systems with a specially designed communication infrastructure, a.k.a. supercomputers, even
though the floating-point computing performance of the modern, mass-marketed CPUs is comparable or
better than those of supercomputers [6]. In a recent paper [7], Jiménez draws an interesting picture of the
future of the DNS of turbulent flows in the next 30 years, and assumes that such simulations will be run
on supercomputers. The work by Karniadakis and coworkers [8] makes no exception, in that it shows
that DNS of turbulent flows can be carried out with reasonably good performance on a cluster of
PC, provided they are interconnected by a high-performance Myrinet network. When a Beowulf cluster
of PC connected with standard Fast Ethernet cards is employed [9] on a isotropic turbulence problem,
even after extensive optimization of the code the parallel efficiency, i.e. the ratio between total time
on one processor and p times the computing time on p processors, is as low as 0.5 already when two
machines are used.

In this paper, we present a numerical method for the DNS of turbulent wall flows that has been designed
to require a limited amount of communication, and thereby is well suited for running on commodity hard-
ware. The method is based on the standard normal velocity–normal vorticity formulation and hence uses
Fourier discretization in the homogeneous directions, but high order, compact finite differences schemes are
chosen for the discretization of the wall-normal direction, instead of the classical expansion in terms of
Chebyshev polynomials. It can be used with either cartesian or cylindrical coordinates.

The outline of the paper is as follows. In Section 2.1, the cartesian form of the Navier–Stokes equations
which is best suited for their numerical solution, and their Fourier discretization with respect to the homo-
geneous directions are briefly recalled. In Section 2.2 time discretization is discussed, with emphasis on our
strategy for data storage, which allows us to achieve an important memory optimization. In Section 2.3, the
finite-difference (FD) discretization of the wall-normal direction based on explicit compact schemes is intro-
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duced. Section 3 illustrates the parallel algorithm, which takes advantage of distributed-memory (Section
3.1) as well as shared-memory (Section 3.2) machines; Section 3.3 describes how a specialized parallel com-
puting system can be set up to achieve the highest efficiency based on commodity hardware. Section 4 dis-
cusses the performance of the present parallel method, compared to the information available in the
literature for similar codes. A comparison with a classical parallel strategy often employed in similar codes
is used in Section 4.3.2 to assess the usefulness of the present method when used with low-bandwidth net-
work connections. Lastly, Section 5 is devoted to conclusions.
2. The numerical method

2.1. Governing equations and spectral discretization

Here we describe only the main aspects of the numerical method. Full details, including the extension to
the cylindrical case, can be found in [10].

Our cartesian coordinate system is illustrated in Fig. 1, where a sketch of a plane channel flow is shown:
x, y and z denote the streamwise, wall-normal and spanwise coordinates, and u, v and w the respective com-
ponents of the velocity vector. The flow is assumed to be periodic in the streamwise and spanwise direc-
tions. The reference length d is taken to be one half of the channel height.

The non-dimensional Navier–Stokes equations for an incompressible fluid in cartesian coordinates are
rewritten, following [2], in terms of two scalar differential equations, one (second order) for the wall-normal
component of vorticity g and one (fourth order) for the wall-normal component of velocity v, and then
Fourier-transformed along the homogeneous directions (Fourier-transformed variables will be indicated
with an hat sign). If the non-linear terms are considered to be known, as is the case when such terms
are treated explicitly in the time discretization, these equations (supplemented by no-slip boundary condi-
tions at the walls) become uncoupled and can be solved separately to advance the solution in time by one
step. Computing the non-linear terms and their spatial derivatives requires us first to compute û and ŵ
from v̂ and ĝ. By using the definition of ĝ and the continuity equation written in Fourier space, a 2 · 2 alge-
braic system can be written and solved analytically for the unknowns û and ŵ. Its solution is available in
analytical form only when the variables are Fourier-transformed in the homogeneous directions. The pres-
ent method therefore enjoys its computational efficiency only when a Fourier discretization is employed for
flow
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Fig. 1. Sketch of the computational domain for the cartesian coordinate system.
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these directions, which means that either periodic boundary conditions are suitable for the physical prob-
lem under consideration or a fringe-region technique [11] is adopted.

The unknowns are represented in terms of truncated Fourier series in the homogeneous directions. For
example the wall-normal velocity component v is represented as
vðx; z; y; tÞ ¼
Xþnx=2

h¼�nx=2

Xþnz=2

‘¼�nz=2

v̂h‘ðy; tÞeiha0xei‘b0z; ð1Þ
where h and ‘ are integer indices corresponding to the streamwise and spanwise directions, respectively, and
a0 and b0 are the corresponding fundamental wavenumbers, defining the streamwise and spanwise periods
Lx = 2p/a0 and Lz = 2p/b0 of the computational domain.

The numerical evaluation of the velocity products would require computationally expensive convolu-
tions in wavenumber space, but can be carried out efficiently by transforming the three Fourier components
of velocity back into physical space, multiplying them in all six possible pair combinations, and eventually
re-transforming the six results into wavenumber space. Fast-Fourier-transform (FFT) algorithms are used
in both directions. This technique is often considered ‘‘pseudo-spectral’’, but it should be observed that,
when de-aliasing is performed by expanding the number of collocation points by a factor of at least 3/2
before going from wavenumber space into physical space, the velocity products become identical to the
‘‘spectral’’ ones that could have been obtained, at a much higher computational cost, through the actual
evaluation of the convolution products.
2.2. Time discretization

Time integration of the equations is performed by a partially implicit method, implemented in such a
way as to reduce the memory requirements of the code to a minimum, by exploiting the FD discretization
of the wall-normal direction. The use of a partially implicit scheme is a common approach in DNS [2]: the
explicit part of the equations can benefit from a higher-accuracy scheme, while the stability-limiting viscous
part is subjected to an implicit time advancement, thus relieving the stability constraint on the time-step size
Dt. We employ an explicit third order, low-storage Runge–Kutta method, combined with an implicit sec-
ond-order Crank–Nicolson scheme [12,13].

The procedure to solve the discrete equations for v̂nþ1
h;‘ and ĝnþ1

h;‘ at the time level n + 1 is made by two
distinct steps. In the first step, the RHSs corresponding to the explicit part have to be assembled. In the
representation (1), at a given time the Fourier coefficients of the variables are represented at different y posi-
tions; hence the velocity products can be computed through inverse/direct FFT in wall-parallel planes.
Their spatial derivatives are then computed: spectral accuracy can be achieved for wall-parallel derivatives,
whereas the FD compact schemes described in Section 2.3 are used in the wall-normal direction. These spa-
tial derivatives are eventually combined with values of the RHS at previous time levels. The whole y range
from one wall to the other must be considered.

The second step involves, for each a,b pair, the solution of a set of two ODEs, derived from the implic-
itly integrated viscous terms, for which the RHS is now known. A FD discretization of the wall-normal
differential operators produces two real banded matrices, in particular pentadiagonal matrices when a 5-
point stencil is used. The solution of the resulting two linear systems gives ĝnþ1

h‘ and v̂nþ1
h‘ , and then the pla-

nar velocity components ûnþ1
h‘ and ŵnþ1

h‘ can be computed. For each a,b pair, the solution of the two ODEs
requires the simultaneous knowledge of the RHS in all y positions. The whole a,b space must be consid-
ered. In the a � b � y space the first step of this procedure proceeds per wall-parallel planes, while the
second one proceeds per wall-normal lines.

To understand our memory-efficient implementation of the time integration procedure, let us consider
the following differential equation for the one-dimensional vector f = f(y):
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df

dt
¼ NðfÞ þ A � f; ð2Þ
where N denotes non-linear operations on f and A is the coefficient matrix which describes the linear part.
After time discretization of this generic equation, that has identical structure to both the ĝ and v̂ equations,
the unknown at time level n + 1 stems from the solution of the linear system
ðAþ kIÞ � f ¼ g; ð3Þ

where g is given by a linear combination (with suitable coefficients which depend on the particular time inte-
gration scheme and, in the case of Runge–Kutta methods, on the particular substep too) of
f; NðfÞ and A � f evaluated at time level n and at a number of previous time levels. The number of previous
time levels depends on the chosen explicit scheme. For the present, low-storage Runge–Kutta scheme, only
the additional level n � 1 is required.

The quantities f; NðfÞ and A � f can be stored in distinct arrays, thus resulting in a memory requirement
of seven variables per point for a two-levels time integration scheme. An obvious, generally adopted opti-
mization is the incremental build into the same array of the linear combination of f; NðfÞ and A � f, as
soon as the single addendum becomes available. The RHS can then be efficiently stored in the array f

directly, thus reducing the memory requirements down to three variables per point.
The additional optimization we are able to enforce here relies on the FD discretization of the wall-

normal derivatives. Referring to our simple example, the incremental build of the linear combination is per-
formed contemporary to the computation of NðfÞ and A � f, the result being stored into the same array
which already contained f. The FD discretization ensures that, when dealing with a given y level, only a
little slice of values of f, centered at the same y level, is needed to compute NðfÞ. Hence just a small addi-
tional memory space, of the same size of the FD stencil, must be provided, and the global storage space
reduces to two variables per point for the example equation (2).

The structure of the time integration procedure implemented in our DNS code is symbolically shown in
the bottom chart of Fig. 2, and compared with the standard approach, illustrated in the top chart. Within
the latter approach, in a main loop over the wall-parallel planes (integer index j) the velocity products are
computed pseudo-spectrally with planar FFT, their spatial derivatives are taken and the result is eventually
stored in the three-dimensional array nl. After the loop has completed, the linear combination of f, nl and
A Æ f is assembled in a temporary two-dimensional array RHS, then combined into the three-dimensional
array f with the contribution from the previous time step, and eventually stored in the three-dimensional
array rhsold for later use. The RHS, which uses the storage space of the unknown itself, permits now to
solve the linear system which yields the unknown at the future time step, and the procedure is over, requir-
ing storage space for 3 three-dimensional arrays.

The flow chart on the bottom of Fig. 2 illustrates the present approach. In the main loop over wall-
parallel planes, not only the non-linear terms are computed, but the RHS of the linear system is assembled
plane-by-plane and stored directly in the three-dimensional array f, provided the value of the unknown in a
small number of planes (5 when a 5-point FD stencil is employed) is conserved. As a whole, this procedure
requires only 2 three-dimensional arrays for each scalar equation.

2.3. High-accuracy compact finite difference schemes

The discretization of the first, second and fourth wall-normal derivatives D1, D2 and D4, required for the
numerical solution of the present problem is performed through FD compact schemes [14]. One important
difference with [14] is that our compact schemes are at the same time explicit and at fourth-order accuracy.
The computational molecule is composed of five arbitrarily spaced (with smooth stretching) grid points on
a mesh of ny + 1 points yj, with 0 6 j 6 ny. We indicate here with dj

1ðiÞ; i ¼ �2; . . . ; 2 the five coefficients
discretizing the exact operator D1 over five adjacent grid points centered at yj, i.e.



Fig. 2. Comparison between the standard implementation of a two-level time-advancement scheme (top), and the present, memory-
efficient implementation (bottom). Variables printed in bold require three-dimensional storage space, while italics marks temporary
variables which can use two-dimensional arrays. Greek letters denote coefficients defining a particular time scheme. The present
implementation reduces the required memory space for a single equation from 3 to 2 three-dimensional variables.
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D1ðf ðyÞÞjyj ’
X2

i¼�2

dj
1ðiÞf ðyjþiÞ;
where yj is the y position on the computational mesh where the derivative has to be evaluated. The coef-
ficients d j change with the distance from the wall (i.e. with the integer index j) when a non-uniform mesh
is employed.
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Compact schemes are also known as implicit FD schemes, because they typically require the inversion of
a linear system for the actual calculation of a derivative [14,15]: this increases the complexity and the com-
putational cost of such an approach. For the present problem, we are able however to determine explicitly
the coefficients for compact, fourth-order accurate schemes, thanks to the absence of the D3 operator from
the present equations. This important simplification has been highlighted first in the original Gauss–Jack-
son–Noumerov compact formulation exploited in his seminal work by Thomas [16], concerning the numer-
ical solution of the Orr–Sommerfeld equation.

To illustrate Thomas� method, let us consider a fourth-order ordinary differential equation (linear for
simplicity) for a function f(y) in the following conservation form:
D4ða4f Þ þ D2ða2f Þ þ D1ða1f Þ þ a0f ¼ g; ð4Þ

where the coefficients ai = ai(y) are arbitrary functions of the independent variable y and g = g(y) is the
known RHS. Let us moreover suppose that in frequency space a differential operator, for example D4, is
approximated as the ratio of two polynomials, say D4 and D0. Polynomials like D4 and D0 have their
counterpart in physical space, and d4 and d0 are the corresponding FD operators. The key point is to im-
pose that all the differential operators appearing in the example equation (4) admit a representation such as
the preceding one, in which the polynomial D0 at the denominator remains the same. Eq. (4) can thus be
recast in the new, equivalent discretized form
d4ða4f Þ þ d2ða2f Þ þ d1ða1f Þ þ d0ða0f Þ ¼ d0ðgÞ ð5Þ
and this allows us to use explicit FD schemes, provided the operator d0 is applied to the RHS of the equa-
tion and to the terms not involving y derivatives. The overhead related to the use of implicit finite difference
schemes disappears, while the advantage of using compact schemes is retained.

When compared to [16], the present approach is similar, but we decided to allow for variable coefficients
ai(y) inside the differential operators Di. Thomas� choice of considering differential operators of the form
aiDi(f) is equivalent in principle, but it would have required to solve for an auxiliary variable f 0 = d0(f).
The present choice moreover is better suited for a differential equation written in conservative form, where
only six convolutions have to be evaluated.

In our implementation, to obtain a formal accuracy of order 4 we have used a computational stencil of
five grid points. To compute the FD coefficients, we have followed a standard procedure in the theory of
Padé approximants [17]. For each distance yj from the wall, a 10 · 10 linear system can be set up and solved
for the unknown coefficients. A mesh with variable size in the wall-normal direction is often desirable, in
order to keep track of the increasingly smaller turbulence length scales when the wall is approached. The
use of a non-uniform mesh together with compact schemes at high accuracy is known [18] to require special
care when the differential equation is used as an additional relation which can be differentiated to eliminate
higher-order truncation errors. In the present approach the use of a non-uniform mesh in such a way as to
still keep a fourth-order accuracy simply requires the procedure outlined above to be performed (numeri-
cally) again for each y station, but only once at the beginning of the computations. The computer-based
solution of these systems requires a negligible computing time.

We end up with FD operators which are altogether fourth-order accurate; the sole operator D4 is dis-
cretized at sixth-order accuracy. As suggested in [14,15], the use of all the degrees of freedom for achieving
the highest formal accuracy might not always be the optimal choice. We have therefore attempted to dis-
cretize D4 at fourth-order accuracy only, and to spend the remaining degree of freedom to improve the
spectral characteristics of all the FD operators at the same time. Our search has shown however that no
significant advantage can be achieved: the maximum of the errors can be reduced only very slightly, and
– more important – this reduction does not carry over to the entire frequency range.

The boundaries obviously require non-standard schemes to be designed to properly compute derivatives
at the wall. For the boundary points we use non-centered schemes, whose coefficients can be computed
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following the same approach as the interior points, thus preserving by construction the formal accuracy of
the method. Nevertheless, the numerical error contributed by the boundary presumably carries a higher
weight than interior points, albeit mitigated by the non-uniform discretization. A systematic study of this
error contribution and of alternative more refined treatments of the boundary are ongoing work.
3. The parallel strategy

3.1. Distributed-memory computers

If the calculations are to be executed in parallel by p computing machines (nodes), data necessarily reside
on these nodes in a distributed manner, and communication between nodes will take place. Our main design
goal is to keep the required amount of communication to a minimum.

When a fully spectral discretization is employed, a transposition of the whole dataset across the comput-
ing nodes is needed every time the numerical solution is advanced by one time (sub)step when non-linear
terms are evaluated. This is illustrated for example in the paper by Pelz [19], where parallel FFT algorithms
are discussed in reference to the pseudo-spectral solution of the Navier–Stokes equations. Pelz shows that
there are basically two possibilities, i.e. using a distributed FFT algorithm or actually transposing the data,
and that they essentially require the same amount of communication. The two methods are found in [19] to
perform, when suitably optimized, in a comparable manner, with the distributed strategy running in slightly
shorter times when a small number of processors is used, and the transpose-based method yielding an
asymptotically faster behavior for large p. The large amount of communication implies that very fast net-
working hardware is needed to achieve good parallel performance, and this restrict DNS to be carried out
on very expensive computers only.

Of course, when a FD discretization in the y direction is chosen instead of a spectral one, it is conceivable
to distribute the unknowns in wall-parallel slices and to carry out the two-dimensional inverse/direct FFTs
locally to each machine. Moreover, thanks to the locality of the FD operators, the communication required
to compute wall-normal spatial derivatives of velocity products is fairly small, since data transfer is needed
only at the interface between contiguous slices. The reason why this strategy has not been used so far is
simple: a transposition of the dataset seems just to have been delayed to the second half of the time step
advancement procedure. Indeed, the linear systems which stem from the discretization of the viscous terms
require the inversion of banded matrices, whose principal dimension span the entire width of the channel,
while data are stored in wall-parallel slices.

A transpose of the whole flow field can be avoided however when data are distributed in slices parallel to
the walls, with FD schemes being used for wall-normal derivatives. The arrangement of the data across the
machines is schematically shown in Fig. 3: each machine holds all the streamwise and spanwise wavenum-
bers for ny/p contiguous y positions. As said, the planar FFTs do not require communication. Wall-normal
derivatives needed for the evaluation of the RHSs do require a small amount of communication at the inter-
face between contiguous slices. However, this communication can be avoided at all if, when using a 5-point
stencil, two boundary planes on each internal slice side are duplicated on the neighboring slice. This dupli-
cation is obviously a waste of computing time and translates into an increase of the actual size of the com-
putational problem. However, since the duplicated planes are 4(p � 1), as long as p � ny this overhead is
negligible. When p becomes comparable to ny, an alternative procedure involving a small amount of com-
munication becomes convenient. We will further discuss this point in Section 4.

The critical part of the procedure lies in the second half of the time-step advancement, i.e. the solution of the
set of two linear systems, one for each h, ‘ pair, and the recovery of the planar velocity components: the nec-
essary data just happen to be spread over all the pmachines. It is relatively easy to avoid a global transpose, by
solving each system in a serial way across the machines: adopting a LU decomposition of the pentadiagonal,
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Fig. 3. Arrangement of data in wall-parallel slices across the channel, for a parallel execution with p = 4 computing nodes.
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distributed matrices, and a subsequent sweep of back-substitutions, only a few coefficients at the interface
between two neighboring nodes must be transmitted. The global amount of communication remains very
low and, at the same time, local between nearest neighbors only. The problem here is obtaining a reasonably
high parallel efficiency: if a single system had to be solved, the computing machines would waste most of their
time waiting for the others to complete their task. In other words, with the optimistic assumption of infinite
communication speed, the total wall-clock timewould be simply equal to the single-processor computing time.

The key observation to obtain high parallel performance is that the number of linear systems to be
solved at each time (sub)step is very large, i.e. (nx + 1)(nz + 1), which is at least 104 and sometimes much
larger in typical DNS calculations [20]. This allows the solution of the linear systems to be efficiently pipe-
lined as follows. When the LU decomposition of the matrix of the system for a given h,‘ pair is performed
(with a standard Thomas algorithm adapted to pentadiagonal matrices), there is a first loop from the top
row of the matrix down to the bottom row (elimination of the unknowns), and then a second loop in the
opposite direction (back-substitution). The machine owning the first slice performs the elimination in the
local part of the matrix, and then passes on the boundary coefficients to the neighboring machine, which
starts its elimination. Instead of waiting for the elimination in the h, ‘ system matrices to be completed
across the machines, the first machine can now immediately start working on the elimination in the matrix
of the following system, say h, ‘ + 1, and so on. After the elimination in the first p systems is started, all the
computing machines work at full speed. A synchronization is needed only at the end of the elimination
phase, and then the whole procedure can be repeated for the back-substitution phase.

Clearly this pipelined-linear-system (PLS) strategy involves an inter-node communication made by
frequent sends and receives of small data packets (typically two lines of a pentadiagonal matrix, or two
elements of the RHS array). While the global amount of data is very low, this poses a serious challenge
to out-of-the-box communication libraries, which are known to have a significant overhead for very small
data packets. In fact, as we will mention in Section 4, we have found unacceptably poor performance when
using MPI-type libraries. On the other hand, we have succeeded in developing an effective implementation
of inter-node communication using only the standard i/o functions provided by the C library. Details of
this alternative implementation are illustrated in Section 3.3.

3.2. Shared-memory machines

The single computing node may be single-CPU or multi-CPU. In the latter case, it is possible to exploit
an additional and complementary parallel strategy, which does not rely on message-passing communication
anymore, and takes advantage of the fact that local CPUs have direct access to the same, local memory
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space. We stress that this is different from using a message-passing strategy on a shared-memory machine,
where the shared memory simply becomes a faster transmission medium. Using multiple CPUs on the same
memory space may yield an additional gain in computing time, at the only cost of having the computing
nodes equipped with more than one (typically two) CPUs. For example, the FFT of a whole plane from
physical to Fourier-space and vice versa can be easily parallelized this way, as well as the computing-inten-
sive part of building up the RHS terms. With SMP machines, high parallel efficiencies can be obtained quite
easily by ‘‘forking’’ new processes which read from and write to the same memory space; the operating sys-
tem itself then handles the assignment of tasks to different CPUs, and only task synchronization is a con-
cern at the programming level.

3.3. The personal supercomputer

While a computer program based on the numerical method described heretoforth can be easily used on a
general-purpose cluster of machines, connected through a network and a switch, for maximum efficiency a
dedicated computing system can be specifically designed and built on top of the parallel algorithm described
above.

At the CPU level, the mass-marketed CPUs which are commonly found today in desktop systems are the
perfect choice: their performance is comparable to the computing power of the single computing element of
any supercomputer [6], at a fraction of the price. The single computing node can hence be a standard desk-
top computer; SMP mainboards with two CPUs are very cheap and easily available.

The present PLS parallel strategy allows an important simplification in the connection topology of the
machines. Since the transposition of the whole dataset is avoided, communications are always of the point-
to-point type; moreover, each computing machine needs to exchange data with and only with two neighbor-
ing machines only. This can be exploited with a simple ring-like connection topology among the computing
machines, sketched in Fig. 4, which replicates the logical exchange of information and the data structure
previously illustrated in Fig. 3: each machine is connected through two network cards only to the previous
machine and to the next. The necessity of a switch (with the implied additional latency in the network path)
is thus eliminated, in favor of simplicity, performance and cost-effectiveness.

Concerning the transmission protocol, the simplest choice is the standard, error-corrected TCP/IP pro-
tocol. We have estimated that on typical problem sizes the overall benefits from using a dedicated protocol
(for example the GAMMA protocol described in [21]) would be negligible: since the ratio between commu-
nication time and computing time is very low (see Section 4.3 and Fig. 7), the improvements by using such a
protocol are almost negligible, and to be weighed against the increase in complexity and decrease in
portability.

The simplest and fastest strategy we have devised for the communication type is to rely directly on the
standard networking services of the Unix operating system, i.e. sockets (after all, message-passing libraries
are socket-based). At the programming level, this operation is very simple, since a socket is seen as a plain
file to write into and to read from. Using sockets allows us to take advantage easily and efficiently of the
advanced buffering techniques incorporated in the management of the input/output streams by the operat-
ing system: after opening the socket once and for all, it is sufficient to write (read) data to (from) the socket
whenever they are available (needed), and the operating system itself manages flushing the socket when its
associated buffer is full. We have found however that for best performances the buffer size had to be empir-
ically adjusted: for Fast Ethernet hardware, the optimum has been found at the value of 800 bytes, signif-
icantly smaller than the usual value (the Linux operating system defaults at 8192).

We have built a prototype of such a dedicated system, composed of eight SMP personal computers. Each
node is equipped with two Pentium III 733 MHz CPU and 512 MB of 133 MHz SDRAM. The nodes are
connected to each other by two cheap 100 MBits Fast Ethernet cards. We call such a machine a personal
supercomputer. The performance of our numerical method used on this system will be shown in Section 4
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to be comparable to that of a supercomputer. Such machines enjoy the advantages of a simple desktop per-
sonal computer: low cost and easy upgrades, unlimited availability even to a single user, low weight, noise
and heat production, small requirements of floor space, etc. Further details and instructions to build and
configure such a machine can be found in [10].
4. Performance

The performance of the present PLS method is assessed here in terms of memory requirements, single-
processor CPU time and parallel speedup, both in absolute terms and by comparison with similar DNS
codes. We compare it also with an alternative version of the code, that we have written with a different dis-
tributed-memory parallel strategy. This alternative code employs the more traditional transpose FFT meth-
od [19], so that the streamwise wavenumbers are distributed across the system while the wall-normal
direction is local to each processor. Both parallel algorithms have been preliminarily tested for correctness,
and checked to give identical output between a single-processor run and a truly parallel execution.

Our tests have been mainly conducted on the computing system described in Section 3.3, either on a sin-
gle Pentium III 733 MHz CPU for the single-processor tests, or by using multiple processors for the parallel
tests. A few measurements are collected by using more recent dual-processor Opteron machines, available
at Salerno University. Each of the Opteron machines is equipped with two 1.6 GHz AMD CPUs, and car-
ries 1 GB of RAM; the machines are equipped with three Gigabit Ethernet cards each. They are thus con-
nected both in a switched network via one card and the interposed HP 2724 switch, and in the ring topology
by means of the other two cards.
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The performance of our codes on these machines cannot easily be compared with performance figures of
similar codes, since the information available in the literature is often partial and based on each time dif-
ferent computing machines. Some data (for example, RAM requirements) of course can be compared di-
rectly, given their independence of the particular computer architecture. For other data (typically, CPU
time) we report our own figures, and we try in addition to compare qualitatively such data with CPU time
on different architectures, by using the Performance Database maintained and published monthly by Don-
garra [6].

The results presented in what follows are computed with the parallel algorithm described in Section 3.1.
As already pointed out, this algorithm is especially well suited when a limited number of computing nodes is
available. Indeed, the duplication of four computing planes for each internal slice interface implies a CPU
penalty, while allowing the bare minimum of inter-node communication. This penalty increases with the
number of computing nodes and decreases with the number of discretization points in the y direction.

We define the speedup factor as the ratio of the actual wall-clock computing time tp obtained with p
nodes and the wall-clock time t1 required by the same computation on a single node:
SðpÞ ¼ tp
t1
.

The maximum or ideal speedup factor Si that we can expect with our PLS algorithm, corresponding to the
assumption of infinite communication speed, is less than linear, and can be estimated with the formula
SiðpÞ ¼ p 1� 4ðp � 1Þ
ny

� �
; ð6Þ
where the factor 4 accounts for the two wall-parallel planes duplicated at each side of interior slices. Eq. (6)
reduces to a linear speedup when ny ! 1 for a finite value of p. A quantitative evaluation of the function
(6) for typical values of ny ¼ Oð100Þ shows that the maximum achievable speedup is nearly linear as long as
the number of nodes remains moderate, i.e. p < 10. We are presently considering a slightly different parallel
implementation, still in development at the present time, which is better suited for use when p ¼ OðnyÞ.
4.1. Memory requirements

One fundamental requirement for a DNS code is to save RAM: Jiménez in [7] considers RAM occupa-
tion and CPU time as performance monitors of equivalent importance. The amount of required RAM is
dictated by the number and the size of the three-dimensional arrays, and it is typically reported [2,22,7]
to be no less than 7nx · ny · nz floating-point variables. Cases where RAM requirements are significantly
higher are not uncommon: for example in [23] a channel flow simulation of 128 · 65 · 128 reportedly
required 1.2 GB of RAM, suggesting a memory occupation approximately 18 times larger.

In our code all the traditional optimizations are employed: for example there is no reserved storage space
for ĝ, which overwrites û in certain sections of the time-integration procedure, and is overwritten by û in
other sections. An additional saving specific to the present method comes from the implementation of
the time advancement procedure, discussed in Section 2.2, which takes advantage of the FD discretization
of the wall-normal derivatives. Each of the two scalar equations for ĝ and v̂ requires two variables per
point. In addition, solving the algebraic system for û and ŵ raises the global memory requirement to five
variables per point. Thus our code requires a memory space of five nx · ny · nz floating-point variables,
plus workspace and two-dimensional arrays. For example a simulation with nx = ny = nz = 128 takes only
94 MB of RAM (using 64-bit floating-point variables).

In a parallel run the memory requirement can be subdivided among the computing machines. With p = 2
the same 1283 case runs with 53 MB of RAM (note that the amount of RAM is slightly larger than one half
of the p = 1 case, due to the aforementioned duplication of boundary planes). The system as a whole there-
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fore allows the simulation of turbulence problems of very large computational size even with a relatively
small amount of RAM deployed in each node. A problem with computational size of 4003 would easily
fit into our 8 nodes equipped with 512 MB RAM each.
4.2. CPU requirements

As far as CPU efficiency is concerned, without special optimization the 1283 test case mentioned above
requires 42.8 CPU seconds for the computation of a full three-substeps Runge–Kutta temporal step on a
single Pentium III 733 MHz processor. Unfortunately, we are not aware of papers where a similar code is
clearly documented in terms of time required for running a problem of a specified size on these CPU types.
One can however deduce from [22] that a computational case of slightly smaller size, i.e. 128 · 96 · 128
(which takes 31 s on our machine) runs on a single processor of the 256 nodes Cray T3E of the National
Supercomputer Center of Linköping (Sweden) in approximately 40 s, and on a single processor of the 152
nodes IBM SP2 machine, available at the Center for Parallel Computers of KTH University, in 8 s of CPU
time. These timings are in a ratio which is not far from the ratio among the computing power of the dif-
ferent CPUs, as deduced from the tables reported in [6], and indicate that the SP2 machine is the one which
is able to achieve the higher percentage of its theoretical peak power. The present code hence is roughly
equivalent (in its serial version) to that described in [22] in terms of CPU efficiency. Another paper which
reports execution times for a 1283 problem is in [24]: their code for isotropic turbulence appears to run on
one CPU of an IBM SP3 Power3 Nighthawk taking approximately 10 min per time step.

The internal timings of our code show that the direct/inverse two-dimensional FFT routines take the
largest part of the CPU time, namely 56%. The calculation of the RHS of the two governing equations
(where wall-normal derivatives are evaluated) takes 25% of the total CPU time, the solution of the linear
systems arising from the implicit part around 12%, and the calculation of the planar velocity components
3%. The time-stepping scheme takes 3% and computing a few runtime statistics requires an additional 1%
of the CPU time.
4.3. Parallel efficiency

4.3.1. Distributed-memory speedup

The parallel (distributed-memory) performance of the code is illustrated in Fig. 5, where speedup ratios
are reported as a function of the number of computing nodes. The maximum possible speedup Si is shown
with thick lines. Si approaches the linear speedup for large ny, being reasonably high as long as p remains
small compared to ny: with p = 8 it is 6.25 for ny = 128 and 7.125 for ny = 256. Notwithstanding the com-
modity networking hardware and the overhead implied by the error-corrected TCP protocol, the actual
performance compared to Si is extremely good, and improves with the size of the computational problem.
The percentage of time tc spent for communication is estimated as follows:
% tc ¼ 100
tp � t1=SiðpÞ

tp
. ð7Þ
The case 192 · 128 · 192 is hardly penalized by the time spent for communication, which is only 2% of the
total computing time when p = 8. The communication time becomes 7% of the total computing time for the
larger case of nx = 128, ny = 256 and nz = 128, and is 12% for the worst (i.e. smallest) case of 1283, which
requires 7.7 s for one time step on our machine, with a speedup of 5.55. In Fig. 5, we report also (with gray
symbols) speedup data from [22] for his case with size 128 · 96 · 128: this case runs in approximately 2 s
when eight processors are used on the SP2 (speedup 3.9), while it requires 6 s with eight processors of
the T3E (speedup 6.8).
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It is worth mentioning again that our communication procedure can easily be implemented through a
standard message-passing library, but shows in this case a noticeably degraded performance. In fact we
have tested the present method on a 1283 case with p = 2 and using the MPI library. A speedup of
S = 0.87 has been measured (i.e. the wall clock is increased), to be compared with Si = 1.94 and a measured
speedup of S = 1.92 with the use of plain sockets. This result is explained by the large overhead implied by
the MPI library, that is known to be inefficient in transmitting extremely small data packets. We would like
to stress again that, from a programming point of view, plain sockets are definitely simple to use: once the
socket is properly opened, the procedure of communication with another machine boils down to simply
writing to or reading from a file.

Fig. 6 illustrates the speedup achieved with the faster Opteron machines connected via Gigabit
Ethernet cards in the ring-topology layout, compared with Si. The test case has a size of 2563. The
CPUs of this system are significantly faster than the Pentium III, and the network cards, while having
10 times larger bandwidth, have latency characteristics typical of Fast Ethernet cards. It is remarkable
how well the measured speedup still approaches the ideal speedup, even at the largest tested value of p.
Furthermore, we report also the measured speedup when the Opteron machines are used with the Giga-
bit cards set up to work at the lower speeds of 100 and 10 MBit/s. It is interesting to observe how
slightly performance is degraded in the case at 100 MBit/s, whose curve is nearly indistinguishable form
that at 1 GBit/s. Even with the slowest 10 MBit/s bandwidth connecting such fast processors, and with
a problem of large computational size, it is noteworthy how the present method is capable to achieve a
reasonable speedup for low p and not to ever degrade below S = 1. This relative insensitivity to the
available bandwidth can be ascribed to the limited amount of communication required by the present
method.
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The amount of data which has to be exchanged by each machine for the advancement of the solution by
one time step made by three Runge–Kutta substeps can be quantified as follows. The amount of data (in
bytes) Dr transmitted and received by each computing node for p > 2 and in one complete time step is
Dr ¼ 3� 8� nx� nz� 88 ¼ 2112 nx� nz;
where 3 is the number of temporal substeps, 8 accounts for 8-bytes variables, and 88 is the total number of
scalar variables that are exchanged at the slice interfaces for each wavenumber pair (during solution of the
linear systems and of the algebraic system to compute û and ŵ). For the 1283 case, Dr � 276 MBit of net-
work traffic, evenly subdivided between the two network cards.

Interestingly, the quantity Dr is linear in the total number of Fourier modes nx · nz, and does not depend
upon ny.Moreover, the amount of traffic does not increasewhen p increases. This has to be contrastedwith the
amount of communication required by other parallel methods; this comparison will be discussed in Section
4.3.3.

As already mentioned, the parallel strategy described here targets only systems where the number p of
computing nodes is small compared to the number ny of points in the y direction. Increasing p at fixed ny

leads to gradually worse performance, since the actual size of the problem increases owing to the duplicated
planes at the interface. Nevertheless, Fig. 7 shows that, even when a larger number of computing nodes is
employed on a problem of a large size, the percentage of the computing time spent for communication, esti-
mated according to Eq. (7), remains very low. This figure reports the parallel performance measured on a
cluster of SMP machines equipped with two Itanium II processors, and connected with Gigabit Ethernet
cards and a switch, available courtesy of the SHARCNET Computing Centre at the University of Western
Ontario. The test case has a size of nx = 512, ny = 256 and nz = 512.

Fig. 7 suggests that the communication time remains limited up to relatively large values of p, even when
the networking hardware (Gigabit Ethernet) allows a bandwidth more than two orders of magnitude smal-
ler than a typical supercomputer.
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4.3.2. Comparison with a different parallel strategy: the transpose method

In order to be able to compare the present PLS parallel strategy with a standard strategy which performs
a block transpose before and after each FFT, we have written a second version of our code, that adopts the
same FD discretization for the wall-normal direction, but distributes the streamwise wavenumbers across
the nodes, i.e. organizes data in slices parallel to the a-axis of Fig. 3. The serial performance of the two
computer codes is identical, since for p = 1 they perform the same operations. Even though we have obvi-
ously put less optimization effort into the transpose code, written ad hoc for this test, compared the PLS
code, we have to mention that the transpose code has been written with the basic optimizations in mind.
In particular, we have taken care that communications are scheduled in such a way that the machines
are always busy communicating, which is an essential requirement to achieve high performance with the
transpose FFT.

The amount of data (in bytes) Dt which has to be exchanged by each machine for the complete advance-
ment by one time step with the transpose-based method is as follows:
Dt ¼ 3� 8� ðp � 1Þ nx
p
� 3

2

nz
p
� ny � 18 ¼ 648

p � 1

p2
nx� nz� ny.
Again, the factors 3 and 8 account for the number of temporal substeps and the 8-bytes variables, respec-
tively. In the whole process of computing non-linear terms nine scalars have to be sent and received (three
velocity components before IFT and six velocity products after FFT); for each wall-parallel plane, each
machine must exchange with each of the others p � 1 nodes an amount of nx · nz/p2 grid cells, and the fac-
tor 3/2 corresponds to dealiasing in one horizontal direction (the 3/2 expansion, and the subsequent re-
moval of higher-wavenumber modes, in the other horizontal direction can be performed after
transmission).
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The ratio between the communication required by the transpose-based method and the PLS method can
thus be written as
Fig. 8.
PLS m
Dt

Dr

¼ 0.307
p � 1

p2
ny;
which corresponds to the intuitive idea that the transpose method exchanges all the variables it stores lo-
cally, whereas the PLS method only exchanges a (small) number of wall-parallel planes, independent on ny

and p. Moreover, the ratio Dt/Dr, being proportional to ny for a given p, is expected to increase with the
Reynolds number of the simulation, since so does the number of points needed to discretize the wall-normal
direction, thus indicating an increase of PLS efficiency relative to the transpose strategy. More important,
when the transpose-based method is employed, the global amount of communication that has to be man-
aged by the switch increases with the number of computing machines and is all-to-all rather than between
nearest neighbors only, so that its performance is expected to degrade when a large p is used.

For a case sized 1283 and p = 2, Dt amounts to �2700 MBit. This gives a lower bound for the commu-
nication time with the transpose-based method of 27 s with Fast Ethernet, to be compared with a single-
processor execution time of t1 = 42.8 s on a single Pentium III. Indeed, when tested on the Fast Ethernet
Pentiums, the transpose-based method has not been found to yield any reduction of the wall-clock comput-
ing time: we have measured t2 = 51.2 s. This is in line with the previous estimate: t2 stems from a computing
time t1/2 plus a communication time of 29.8 s, which is near to the time estimate on the basis of Dt and
assuming network cards running at full speed. With a faster network the performance of the transpose-
based method improve. Fig. 8 reports comparative measurements between the PLS and the transpose-based
methods, run on eight Opteron boxes interconnected with Gigabit Ethernet. The PLS method is run with
the machines connected in a ring, while the transpose-based method is tested with machines linked through
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a switch. Measurements show that S > 1 can now be achieved with the transpose-based method. However,
the transpose method performs best for the smallest problem size, while the PLS shows the opposite behav-
ior. For the 2563 case, which is a reasonable size for such machines, the speedup from the transpose-based
method is around one half of what can be obtained with PLS.

4.3.3. Shared-memory speedup

In the present approach, we exploit the availability of two CPUs for each computing node by assigning
to each of them the computation of a different FFT, and then the RHS setup for one half of the wavenum-
ber pairs. Since this part of the code is local to each machine, there is no communication overhead asso-
ciated with the use of the second CPU, therefore the gain is essentially independent of the number p of
computing machines.

We have tested machines equipped with two CPUs, and measured a 1.55 speedup on a 2-CPU Pentium III
box. On the dual Opteron system, which exploits a faster memory at 400 MHz and a proprietary memory
and inter-processor bus, the speedup increases to 1.7. The implementation of the shared-memory parallelism
was not the main focus of the present work, so that for simplicity we have parallelized only the non-linear
part of the time-stepping procedure, a portion of the serial code estimated around 80%. The additional SMP
gain is thus an interesting result, since it comes at a low cost. Indeed, the cost of a dual-CPU node is only a
fraction greater than the cost of a single-CPU computing node. Systems with more than two CPU are today
significantly more expensive and, although we have not tested any of them, may be suspected to perform
quite inefficiently when used with the present application, owing to the increased memory-contention prob-
lems. Hence, we regard the use of a second CPU as an added bonus at a little extra cost.

The SMP speedup is where the PLS method shows another advantage compared with the transpose-
based method. The second CPU can be exploited in the transpose-based method too, however in this case
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the global effectiveness degrades, since the speed of each node increases while the communication time re-
mains the same. This can be appreciated in Fig. 9, where performance for a case 2563 is observed to become
unacceptable when p > 6 and two CPU for each machine are used with the transpose method. With PLS, on
the other hand, the penalty associated with the larger amount of communication per unit of computing time
is clearly seen to remain limited, and no significant decrease of the parallel efficiency is observed when the
second CPU in each node is activated.
5. Conclusions

In this paper, we have described a numerical method suitable for the parallel DNS of incompressible wall
turbulence, capable of achieving high efficiency by using commodity hardware. The method can be used
when the governing equations are written either in cartesian or in cylindrical coordinates.

The key point in its design is the choice of compact finite differences of fourth-order accuracy for the
discretization of the wall-normal direction. The use of finite differences schemes, while retaining a large part
of the accuracy enjoyed by spectral schemes, is crucial to the development of the parallel strategy, which
exploits the locality of the FD operators to largely reduce the amount of inter-node communication. Finite
differences are also key to the implementation of a memory-efficient time integration procedure, which per-
mits a minimal storage space of five variables per point, compared to the commonly reported minimum of
seven variables per point. This significant saving is available in the present case too, the use of compact
schemes notwithstanding, since they can be written in explicit form, leveraging the missing third derivative
in the governing equations.

The parallel method described in this paper, based on the pipelined solution of the linear systems arising
from the discretization of the viscous terms, achieves its best performance on systems where the number of
computing nodes is significantly smaller than the number of points in the wall-normal direction. The global
transpose of the data, which typically constrains DNS codes to run on machines with very large networking
bandwidth, is completely avoided. We have verified that a code based on transpose algorithms cannot yield
acceptable parallel speedups when Fast Ethernet network cards are employed. When the 10-times-faster
Gigabit Ethernet is used, the transpose-based method yields positive speedups but cannot compete, in abso-
lute terms, with the present PLS method, that is capable to guarantee high parallel efficiency also on state-
of-the-art processors connected with relatively slow Fast Ethernet cards.

As a result, the computing effort, as well as the required memory space, can be efficiently subdivided
among a number of low-cost computing nodes. Moreover, the distribution of data in wall-parallel slices
allows us to exploit a particular, efficient and at the same time cost-effective connection topology, where
the computing machines are connected to each other in a ring. Getting rid of the switch is something that
should not be underestimated. When the transpose-based code is run for a 1283 case on two Opteron
machines connected each other point-to-point without the HP switch, the parallel speedup increases signif-
icantly, from 1.13 to 1.53. When a third machine is inserted between the two computing machines, the
parallel speedup becomes 1.40. While we are not in the position to extrapolate the relevance of this result
to higher-quality switches, removing the need for a switch altogether is certainly an improvement
performancewise.

A dedicated system can be easily built, using commodity hardware and hence at low cost, to run a com-
puter code based on the PLS method. Such a system grants high availability and throughput, as well as ease
in expanding/upgrading. It is our opinion that this concept of personal supercomputer can be successful,
since it is a specialized system, yet built with mass-market components, and can be fully dedicated to a sin-
gle research group or even to a single researcher, rather than being shared among multiple users through a
queueing system. Moreover, the additional investment required to specialize towards the PLS code a gen-
eral-purpose cluster of PC is simply that required to acquire two additional network cards for each node,
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plus a few meters of network cable. This means that a cluster can be easily built in such a way that it works
optimally both as a parallel computing server for the general public and a DNS computer for a research
group employing a PLS-based code.

Concerning the (theoretical) peak computing power, we have estimated in [25] that the investment (early
2003) required to obtain 200 GFlop/s of peak power with a state-of-the-art supercomputer would be 50–
100 times higher than that needed to build a personal supercomputer of the same power. The smaller invest-
ment, together with additional advantages like reduced power consumption and heat production, minimal
floor space occupation, etc., allows the user to have dedicated access to the machine for unlimited time, thus
achieving the highest throughput. As an example, in [26] we have performed with the Pentium III-based
machine a large number of turbulent channel flow simulations, whose global computational demand is esti-
mated to be 300–400 times larger than the DNS described in [2]. Even though our performance measure-
ments have been partly carried out on relatively old computing hardware, we have demonstrated that very
good parallel speedups can be obtained for problems whose computational size fits that of typical DNS
problems affordable with the given hardware.

The sole significant difference performancewise between such a system and a real supercomputer lies in
the networking hardware, which offers significantly larger bandwidth and better latency characteristics in
the latter case. However, the negative effects of this difference are not felt when the present parallel algo-
rithm is employed, since the need for a large amount of communication is removed a priori, thanks to
the algorithm itself.
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